\begin{tabbing} ESMachineAxiom($E$;$T$;$V$;$M$;${\it loc}$;${\it knd}$;${\it val}$; \\[0ex]${\it when}$;${\it after}$; \\[0ex]${\it sndr}$;${\it Trans}$;${\it Send}$;${\it Choose}$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=($\forall$$e$:$E$. ($\lambda$$x$.${\it after}$($x$,$e$)) = ${\it Trans}$(${\it loc}$($e$),${\it knd}$($e$),${\it val}$($e$),$\lambda$$x$.${\it when}$($x$,$e$)))\+ \\[0ex]\& (\=$\forall$$e$:$E$.\+ \\[0ex]($\uparrow$islocal(${\it knd}$($e$))) \\[0ex]$\Rightarrow$ \=(($\uparrow$isl(${\it Choose}$(${\it loc}$($e$),act(${\it knd}$($e$)),$\lambda$$x$.${\it when}$($x$,$e$))))\+ \\[0ex]c$\wedge$ (${\it val}$($e$) = outl(${\it Choose}$(${\it loc}$($e$),act(${\it knd}$($e$)),$\lambda$$x$.${\it when}$($x$,$e$)))))) \-\-\\[0ex]\& (\=$\forall$$e$:$E$.\+ \\[0ex]($\uparrow$isrcv(${\it knd}$($e$))) \\[0ex]$\Rightarrow$ ($<$lnk(${\it knd}$($e$)), tag(${\it knd}$($e$)), ${\it val}$($e$)$>$ $\in$ \=${\it Send}$\+ \\[0ex](${\it loc}$(${\it sndr}$($e$)) \\[0ex],${\it knd}$(${\it sndr}$($e$)) \\[0ex],${\it val}$(${\it sndr}$($e$)) \\[0ex],$\lambda$$x$.${\it when}$($x$,${\it sndr}$($e$))))) \-\-\- \end{tabbing}